Correction: Identification of Druggable Cancer Driver Genes Amplified across TCGA Datasets

نویسندگان

  • Ying Chen
  • Jeremy McGee
  • Xianming Chen
  • Thompson N. Doman
  • Xueqian Gong
  • Youyan Zhang
  • Nicole Hamm
  • Xiwen Ma
  • Richard E. Higgs
  • Shripad V. Bhagwat
  • Sean Buchanan
  • Sheng-Bin Peng
  • Kirk A. Staschke
  • Vipin Yadav
  • Yong Yue
  • Hosein Kouros-Mehr
چکیده

The Cancer Genome Atlas (TCGA) projects have advanced our understanding of the driver mutations, genetic backgrounds, and key pathways activated across cancer types. Analysis of TCGA datasets have mostly focused on somatic mutations and translocations, with less emphasis placed on gene amplifications. Here we describe a bioinformatics screening strategy to identify putative cancer driver genes amplified across TCGA datasets. We carried out GISTIC2 analysis of TCGA datasets spanning 16 cancer subtypes and identified 486 genes that were amplified in two or more datasets. The list was narrowed to 75 cancer-associated genes with potential "druggable" properties. The majority of the genes were localized to 14 amplicons spread across the genome. To identify potential cancer driver genes, we analyzed gene copy number and mRNA expression data from individual patient samples and identified 42 putative cancer driver genes linked to diverse oncogenic processes. Oncogenic activity was further validated by siRNA/shRNA knockdown and by referencing the Project Achilles datasets. The amplified genes represented a number of gene families, including epigenetic regulators, cell cycle-associated genes, DNA damage response/repair genes, metabolic regulators, and genes linked to the Wnt, Notch, Hedgehog, JAK/STAT, NF-KB and MAPK signaling pathways. Among the 42 putative driver genes were known driver genes, such as EGFR, ERBB2 and PIK3CA. Wild-type KRAS was amplified in several cancer types, and KRAS-amplified cancer cell lines were most sensitive to KRAS shRNA, suggesting that KRAS amplification was an independent oncogenic event. A number of MAP kinase adapters were co-amplified with their receptor tyrosine kinases, such as the FGFR adapter FRS2 and the EGFR family adapters GRB2 and GRB7. The ubiquitin-like ligase DCUN1D1 and the histone methyltransferase NSD3 were also identified as novel putative cancer driver genes. We discuss the patient tailoring implications for existing cancer drug targets and we further discuss potential novel opportunities for drug discovery efforts.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Integrating omics data and protein interaction networks to prioritize driver genes in cancer

Although numerous approaches have been proposed to discern driver from passenger, identification of driver genes remains a critical challenge in the cancer genomics field. Driver genes with low mutated frequency tend to be filtered in cancer research. In addition, the accumulation of different omics data necessitates the development of algorithmic frameworks for nominating putative driver genes...

متن کامل

Identification of ovarian cancer driver genes by using module network integration of multi-omics data.

The increasing availability of multi-omics cancer datasets has created a new opportunity for data integration that promises a more comprehensive understanding of cancer. The challenge is to develop mathematical methods that allow the integration and extraction of knowledge from large datasets such as The Cancer Genome Atlas (TCGA). This has led to the development of a variety of omics profiles ...

متن کامل

DriverDBv2: a database for human cancer driver gene research

We previously presented DriverDB, a database that incorporates ∼ 6000 cases of exome-seq data, in addition to annotation databases and published bioinformatics algorithms dedicated to driver gene/mutation identification. The database provides two points of view, 'Cancer' and 'Gene', to help researchers visualize the relationships between cancers and driver genes/mutations. In the updated Driver...

متن کامل

SSA-ME Detection of cancer driver genes using mutual exclusivity by small subnetwork analysis

Because of its clonal evolution a tumor rarely contains multiple genomic alterations in the same pathway as disrupting the pathway by one gene often is sufficient to confer the complete fitness advantage. As a result, many cancer driver genes display mutual exclusivity across tumors. However, searching for mutually exclusive gene sets requires analyzing all possible combinations of genes, leadi...

متن کامل

Dynamic changes of driver genes’ mutations across clinical stages in nine cancer types

The driver genes play critical roles for tumorigenesis, and the number of identified driver genes reached plateau. But how they act during different cancer development stages is lack of knowledge. We investigated 138 driver genes' mutation changes across clinical stages using 3,477 cases in nine cancer types from the Cancer Genome Atlas (TCGA) and constructed their temporal order relationships....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2014